ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. ## Ph.D (STATISTICS) **COURSE CODE: 149** | Register Number : | | | • | |-------------------|---|----------------------|-------------------------| | | | *. | | | | · | Signature of (with d | the Invigilator
ate) | | | | | · . | | | | | | **COURSE CODE: 149** Time: 2 Hours Max: 400 Marks ## Instructions to Candidates: - 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen. - 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification. - 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil. - 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks. - 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works. - 6. Do not open the question paper until the start signal is given. - 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature. - 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them. - 9. Use of Calculators, Tables, etc. are prohibited. | 1. | Whi | ch of the following statements is true | of Mul | tivariate Analysis of Variance? | |----|------------|--|--------------|--| | | (A) | allows us to have one dependent vari | able a | nd one independent variables. | | | (B) | allows us to have two or more deper
variables. | ndent | variables and up to two independent | | | (C) | allows us to have two or more dependent variables. | dent v | ariables and one or more independent | | | (D) | allows us to have one dependent var ables. | iable s | and two or more independent vari- | | 2. | Whi | ch F-value is typically reported in a M | ultiva | riate Analysis of Variance? | | | (A) | Wilks' lambda | (B) | Hotelling's trace. | | | (C) | Pillai's trace | (D) | Roy's largest root. | | 3. | | ch one of these might you consider
iance and may be worth looking at alte | | —————————————————————————————————————— | | | (A) | Box's M has an associated p-value of | < 0.08 | 5 and you have unequal sample sizes. | | | (B) | You have equal numbers of participa | nts ar | nd it is a large sample size | | | · (C) | You have normally distributed dependent variables | ndent | variables and all linear combinations | | | (D) | You have 30 participants per group | n you | r between-participants design | | 4. | | empirically based hypothetical varial ciated with each other and upon which | | , , | | | (A) | Rotating | (B) | A factor loading | | | (C) | Factor analysis | (D) | A factor | | 5. | Rota | ation usually involves high corre | lation | s and low ones. | | | (A) | maximising; minimizing | (B) | minimising; maximizing | | | (C) | plotting; omitting | (D) | retaining; omitting | | 6. | Min | imal sufficient statistic provide | | | | ٠ | (A) | minimum possible reduction in data | | • | | | (B) | minimum information about data | | | | | (C) | maximum possible reduction in data | | | | | (D) | maximum information about data | | | | | | | | · | | 7. | | $X_1, X_2,, X_n$ be a random sample of obtainite variance. For estimating θ , the s | | ~ ~ ~ | |-----|------------|--|---------|---| | | (A) | Biased and consistent | | | | | (B) | Unbiased but not consistent | | | | | (C) | Unbiased and consistent | | | | | (D) | Biased and not consistent | | | | 8. | Let | $X_1, X_2,, X_n$ be iid observations from U | (-θ,θ), | θ >0. The MLE of θ is | | | (A) | $X_{(n)}$ | (B) | X(1) | | | (C) | $X_{(1)+}X_{(n)}$ | (D) | $X_{(n)}-X_{(1)}$ | | 9. | | sider the family of densities $\{f(x; \theta)\}$ | | | | | (A) | $X_{(1)}$ | (B) | $X_{(n)}$ | | | (C) | $\prod_{i=1}^n X_i$ | (D) | $\sum_{i=1}^{n} X_{i}$ | | 10. | (i) I | ch of the following statements is true i
t is used for testing two sided alternat
t attains maximum power in the neigh | ives. | | | | (A) | (i) is true but not (ii) | (B) | (ii) is true but not (i) | | | (C) | Both (i) and (ii) are false | (D) | Both (i) and (ii) are true. | | 11. | | regular family, if $l(x)$ is the likelihood θ is a $k \times 1$ vector, then the asympton | | | | | (A) | Chi-square distribution with 'n-k' de | grees o | of freedom where 'n' is the sample size | | | (B) | Chi-square distribution with 'n' degr | ees of | freedom where 'n' is the sample size | | | (C) | Chi-square distribution with 'k' degr | ees of | freedom | | . • | (D) | Chi-square distribution with 'n+k' o | legree | s of freedom where 'n' is the sample | | 12. | Emp | pirical distribution function is | •, | | | | (A) | Biased and inconsistent estimator of | cumu | lative distribution function | | | (B) | Unbiased and inconsistent estimator | of cur | nulative distribution function | | | (C) | Unbiased and consistent estimator o | f cum | ılative distribution function | | | (D) | Biased and consistent estimator of co | imula | tive distribution function | | (B) Treatment contrasts are uncorrelated (C) Block contrasts are correlated (D) Treatment contrasts are uncorrelated with block contrast 14. Consistency in statistical inference refers to (A) Small sample property (B) Large sample property (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²t_n, the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A+1 149 | | (A) | Treatment contrasts are correlated wi | th blo | ock contrast | | | | | | | |--|-----|---------------|--|--------------|--|--|--|--|--|--|--| | (D) Treatment contrasts are uncorrelated with block contrast 14. Consistency in statistical inference refers to (A) Small sample property (B) Large sample property (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the
value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²t_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (B) | Treatment contrasts are uncorrelated | | | | | | | | | | 14. Consistency in statistical inference refers to (A) Small sample property (B) Large sample property (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²t_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (C) | Block contrasts are correlated | | | | | | | | | | (A) Small sample property (B) Large sample property (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (D) | Treatment contrasts are uncorrelated | with | block contrast | | | | | | | | (B) Large sample property (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | 14. | Cons | sistency in statistical inference refers to | , | | | | | | | | | (C) Property of the underlying family of distributions (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) 0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A + 1 | - | (A) | Small sample property | | | | | | | | | | (D) All the above 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) 0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A + 1 | | (B) | Large sample property | | | | | | | | | | 15. In a 3³ factorial with factors A, B and C each at 3 levels, the interaction A²BC² is same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (C) | Property of the underlying family of d | istrib | utions | | | | | | | | same as the interaction (A) ABC (B) AB²C (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (D) | All the above | | | | | | | | | | (C) AB²C² (D) A²BC 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the
interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A 10. Rank of A + 1 | 15. | | | each | at 3 levels, the interaction A ² BC ² is | | | | | | | | 16. If a researcher forms a 1/2 replicate in a factorial design with treatment combinations a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (A) | ABC | (B) | AB ² C | | | | | | | | a, b, c, abc, the interaction which cannot be estimated is (A) AB (B) ABC (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) 0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (C) | AB ² C ² | (D) | A ² BC | | | | | | | | (C) AC (D) BC 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | 16. | | | | | | | | | | | | 17. If a symmetrical Balanced Incomplete Block Design (BIBD) has the following parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (A) | AB | (B) | ABC | | | | | | | | parameter values v = b = 13, k = r = 4, λ = 1 then the efficiency factor of the design is (A) 16/13 (B) 1/13 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A + 1 | | (C) | AC | (D) | BC | | | | | | | | (C) 12/13 (D) 13/16 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | 17. | para | $ \text{meter values } v = b = 13, \ k = r = 4, $ | | | | | | | | | | 18. The tangent of the angle between two regression lines is given as 0.6 and the standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | | (A) | 16/13 | (B) | 1/13 | | | | | | | | standard deviation of Y is known to be twice of that of X. Then the value of correlation coefficient between X and Y is (A) 0.5 (B) -0.5 (C) 0.7 (D) 0.2 19. With the usual notations, the linear model $Y = A\theta + \epsilon$, where $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I_n$ the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of $A + 1$ | | (C) | 12/13 | (D) | 13/16 | | | | | | | | 19. With the usual notations, the linear model Y = Aθ + ε, where E(ε) = 0, Cov(ε) = σ²I_n the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of A +1 | 18. | stan | dard deviation of Y is known to be | - | - | | | | | | | | $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I_n$ the number of linearly independent estimable parametric functions is (A) Rank of A (B) Number of rows of A (C) Number of columns of A (D) Rank of $A + 1$ | : | (A) | 0.5 (B) -0.5 | . (C) | 0.7 (D) 0.2 | | | | | | | | (C) Number of columns of A (D) Rank of $A+1$ | 19. | $E(\epsilon)$ | $= 0$, $Cov(\epsilon) = \sigma^2 I_n$ the number of I_n | | • | | | | | | | | | | (A) | Rank of A | (B) | Number of rows of A | | | | | | | | 149 | | (C) | Number of columns of A | (D) | Rank of A+1 | | | | | | | | · · · · · · · · · · · · · · · · · · · | 149 | | 4 | | | | | | | | | A design is said to be orthogonal if 13. - Consider a linear model $Y = X\theta + \epsilon$, $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I_n$. The Hat matrix (A) $(X^T X)^{-1} X^T$ (B) $X(X^TX)^{-1}X^T$ (D) $X(X^TX)^{-1}$ (C) $X^T(X^TX)^{-1}$ - 21. Consider a full rank linear model $Y = X\beta + \epsilon$, with $E(\epsilon) = 0$, $Cov(\epsilon) = \sigma^2 I_n$ and $\hat{\beta} = (X^T X)^{-1} X^T Y$. Collinearity exists among the columns of X if (D) Tukey's Test - (A) X^TX is non-singular (B) X^TX is singular (C) X^TX is idempotent \cdot (D) X^TX is symmetric - 22. Which of the following test is called a multiple comparison test Cochran's Test (A) (B) Bartlett's test Hartly's Test - The Chapman-Kolmogrov equation for discrete time Markov chain is (A) $$p_{ij}^{n+m} = \sum_{k=0}^{\infty} p_{ik}^{n} p_{kj}^{m}$$ for all $n, m \ge 0$ (C) (B) $$p_{ij}^{n+m} = \sum_{k=0}^{\infty} p_{ik}^n p_{kj}^m$$ for all $n, m \ge 0$ and all i, j (C) $$p_{ij}^{n+m} = \sum_{k=0}^{n+m} p_{ik}^n p_{kj}^m$$ for all $n, m \ge 0$ (D) $$p_{ij}^{n+m} = \sum_{k=0}^{m} p_{ik}^{n} p_{kj}^{m}$$ for all $n, m \ge 0$ The inverse of the covariance matrix $\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$ (A) $$\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22} -
\sigma_{12}^2} \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{21} & \sigma_{11} \end{bmatrix}$$ (B) $\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22}} \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ \sigma_{21} & \sigma_{11} \end{bmatrix}$ (C) $$\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22} - \sigma_{12}^2} \begin{bmatrix} \sigma_{11} & -\sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$ (D) $\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22} - \sigma_{12}^2} \begin{bmatrix} \sigma_{22} & \sigma_{12} \\ -\sigma_{21} & \sigma_{11} \end{bmatrix}$ - In the case of one dimensional random walk on the positive and negative integers, the 25. state represented by zero is - (A) transient **(B)** recurrent - (C) non null recurrent (D) null recurrent If Σ is positive definite, so that Σ^{-1} exists, then $\Sigma e = \lambda$ e implies $\Sigma^{-1} e = ?$ (A) λe (B) $(1/\lambda)e$ (C) λ (D) $(1/\lambda)$ | 149 | | • | | | 6 | | | : | | | |-----|-------|---|------------|-------------|------------------|--------------|---|----------------------|-------------------------------|--------------------| | | (A) | 2 | (B) | 3 | • | (C) | 29 | (D) | 30 | | | 33. | with | esearch report con
n "F(2,27) = 8.62,
study? | | | | _ | | | _ | | | • | (C) | The acceptance | level | of the prod | luct | (D) | The rejection | level of | the prod | uct | | | (A) | The quality of the | he pro | duct | | (B) | The suitability | y of the | process | | | 32. | The | process capabilit | y inde | x Cp is us | ed to m | easu | re | | | | | | (C) | $\lambda^2 - 3\lambda + 2 = 0$ | | | | (D) | $\lambda^2 + 3\lambda - 2 = 0$ | | | | | | (A) | $\lambda^2 + 3\lambda + 2 = 0$ | | | | ` . | $\lambda^2 - 3\lambda - 2 = 0$ | | | | | 31. | | characteristic eq | uation | of the ma | | | | | | | | | (A) | 2 | ` , | 1 | -4 | (C) | • | (D) | a ² t ² | | | | | the mean $E[X(t)]$ | | _ | | (^ \ | | (TO) | 0.10 | | | | _ | 1746 | | | | , | , | ٠ | - | | | 30. | | sider a process $(t) = n] = \frac{(at)^{n-1}}{(1+at)^n}$ $= \frac{at}{1+at};$ | 1
+1; n | = 1,2, | whose | e pr | obability distr | ibutior | is give | en by | | | (C) | $C\mu$ and ΣC | . • | | (| (D) | $ C \mu$ and $C^T \Sigma$ | CC | | | | | (A) | $C^T\mu$ and $C^T\Sigma C$ | ! | | | | $C\mu$ and $C^T\Sigma C$ | | | | | 29. | | ~ N (μ, Σ) , then as mean = | | | | of C | $^{CT}X = C_1 X_1 + C_2$ | 2 X ₂ + (| Ca X3 + | . + C _p | | | (D) | Geometric distr | ibutio | n with p=6 | st | | | ٠ | | | | | (C) | Binomial (n,p=s | it) | | | | | | | | | | (B) | Binomial (n,p=t | /s) | | | | | | | | | | (A) | Binomial (n,p=s | /t) | | | | | | | | | 28. | If {N | $I(t); t \ge 0$ is a Pois | son p | rocess wit | h rate λ | , the | en for s <t, p[n(<="" td=""><td>s)=k]</td><td>N(t)=n] for</td><td>ollows</td></t,> | s)=k] | N(t)=n] for | ollows | | | (D) | All the above | | | | | | | | | | | (C) | Process with sta | tiona | ry indeper | ident i | ncre | ments | | | | | | (B) | Evolutionary pro | ocess | • | | | | | • | | | | (A) | Markov process | | | | | | | | - | 27. The Poisson process is | 34. | | RBD the treat
servations cor | | | | atio with df | (4, 20). Th | ie total n | umber | |-----|-------------------------|---|---|---|--|---|---|--------------------------------------|------------------------------| | | (A) | 24 | (B) | 29 | (C) | 30 | (D) | 32 | | | 35. | To coposition residuals | are producing
ptimize the entitle pressures
dence times of
ting the beans
esign your opti | fectiver
of CO2
superci
prior to | ness of caffe
, 3 possible t
ritical CO2 v
o caffeine ex | ine remov
temperatu
with bean
traction. V | al, you woul
res, 3 ratios
s, and 2 diffe | d like to
of CO2 to
erent proc | test 2 dif
coffee be
edures fo | ferent
eans, 3
or pre- | | | (A) | Factorial des | ign | | (B) | Taguchi m | ethods | | | | | (C) | Randomized | block de | esign | (D) | Latin squa | re design | | | | 36. | Whi | ch of the follov | ving is i | nconsistent | with the T | aguchi philo | sophy of q | uality co | ntrol? | | | (A) | Variation is t | he oppo | site of quali | ty | | | • | | | | (B) | Interactions should never | | | affecting | product qua | lity are u | nimporta | nt and | | | (C) | Customer dis
and should b | | | most impo | ortant measu | are for pr | ocess var | iation, | | | (D) | A high signal against unco | | | | | | make it | robust | | 37. | In a | two variable l | inear m | odel $Y_i = \alpha +$ | $\beta X_i + u_i$ | (i=1,2,,n) | , the OLS | estimato | r of $oldsymbol{eta}$ | | | is | $\sum_{i=1}^{n} w_i Y_i, \text{ where}$ | w, is ea | qual to | | | | | | | | (A) | $\frac{X_i - \overline{X}}{\sum Y_i^2}$ | (B) $\frac{\lambda}{\Sigma(1-\lambda)}$ | $\frac{X_i - \overline{X}}{X_i - \overline{X})^2}$ | (C) $\overline{\Sigma}$ | $\frac{\overline{Y}}{Y_i^2}$ (D) | $\frac{\overline{X}}{\sum (X_i - X_i)}$ | $\overline{ar{X})^2}$ | | | 38. | In t | ne general line | ar mode | $el Y = X\beta + \delta$ | ${\cal J}$, the un | biased estim | ator of the | e varianc | e of | | | the | disturbance te | erm <i>e</i> = | $Y - X\hat{oldsymbol{eta}}$ is | | | - | | | | | (A) | <u>e e'</u>
n – k | (B) $\frac{e'e}{n-}$ | $\frac{1}{k}$ | (C) $\frac{e'e}{n}$ | (D) | $\frac{ee'}{k}$ | | | | 39. | If a | qualitative va | iable h | as 'm' catègo | ries, intro | duce only | dum | my varial | bles. | | | (A) | m | (B) m | -1 | (C) n | n+1 (D) | m-2 | | | | 40. | Ade | quate basis for | family | planning is | provided b | y: | | | | | | (A) | general ferti | ity rate | | (B) | age specific | marital fe | rtility rat | te | | | (C) | total marital | . | | | total fertility | y rate | - | | | | | | | | | | | | | | 41. | Lexis diagram is a way of measuring | the following: | |-----|---|--| | | (A) Population growth | (B) Nuptiality | | | (C) Migration | (D) Mortality | | 42. | In stratified random sampling $V(ar{y}_{st})$ | is minimized for a fixed total size of sample if | | | $(A) n_h = \frac{n N_h S_h}{\sum N_h S_h}$ | (B) $n_h = n \frac{N_h}{N}$ | | - ' | (C) $n_h = \frac{nN_h S_h}{N \sum S_h}$ | (B) $n_h = n \frac{N_h}{N}$ (D) $n_h = n \frac{\sum N_h s_h}{N_h s_h}$ | | 43. | probabilities $p_i(i=1,2,,N_1); \Sigma$ | N, the first unit in the sample is selected with $p_i = 1$, and the remaining (n-1) units with equal ne probability of selecting a particular sample S is | | | (A) $\sum p_i / {N+1 \choose n+1}$ | (B) $\sum p_i / {N-2 \choose n-2}$ | | | (C) $\sum p_i / {N-1 \choose n-1}$ | (D) $\sum \mathbf{p}_i / {N \choose n}$ | | 44. | SRS with the appropriate formula f | or $V(\bar{y}_r)$ is, where $\rho = S_{xy}/S_y S_x$ is the population | | | (A) $\frac{(1-f)}{2}S_v^2(1+\rho^2)$ | (B) $\frac{(1-f)}{n}S_y^2(\rho^2-1)$ | | | , n | $\frac{(1-f)}{n} \frac{3y(p-1)}{2}$ | | | (C) $\frac{(1-f)}{n}S_y^2(1-\rho^2)$ | (D) $\frac{(1-f)}{n}(1+\rho^2)$ | | 45. | Two stage sampling is due to | | | | (A) Cochran (B) Fisher | (C) Midzuno (D) Mahalanobis | | 46. | | s drawn from a finite population of N units, with the i th $(1 \le i \le N)$ unit is included in the | | | (A) n/N (B) $1-(1-$ | $\left(\frac{1}{N}\right)^n$ (C) $\left(\frac{N-1}{N}\right)^n$ (D) $\frac{n(n-1)}{N(N-1)}$ | | 47. | When a sampling frame has a systrather than a random pattern, | ematic pattern in the listing of sampling units, | | | (A) systematic sample must be dra | wn (B) the problem of periodicity exists. | | | (C) a random error occurs | (D) a cluster sample must be used. | | 48. | | mple from sequentially numbered invoices uses a oth invoice, the sample drawn is a sample. | | | (A) simple random | (B) sequential | | | (C) stratified | (D) systematic | | | | | $$M = \begin{pmatrix} 3 & 4 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 & 0 \\ 0 & 9 & 2 & 0 & 0 \\ 0 & 5 & 0 & 6 & 7 \\ 0 & 0 & 4 & 3 & 4 \end{pmatrix}$$ then |M| is 50. The conjugate of matrix $$\begin{bmatrix} 1-i & 2\\ i & 1+i \end{bmatrix}$$ is $$(A) \quad \begin{bmatrix} 1-i & 2 \\ 1+i & i \end{bmatrix}$$ (B) $$\begin{bmatrix} 1+t & 2 \\ -t & 1-t \end{bmatrix}$$ (C) $$\begin{bmatrix} 2 & 1-i \\ 1+i & i \end{bmatrix}$$ 51. If $$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$, find the eigen values of A^T 52. If $$\lambda_1$$, λ_2 λ_n are eigen values of matrix A, then trace of A is (A) $$\lambda_1, \lambda_2, ... \lambda_n$$ (B) $$\lambda_1 + \lambda_2 + \lambda_n$$ (C) $$1/(\lambda_1 + \lambda_2 + \dots + \lambda_n)$$ (D) $$1/(\lambda_1\lambda_2....\lambda_n)$$ 53. If $$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = 0$$ find x? (A) $$x = 1$$ or $x = -3/2$ (B) $$x = 0$$ or $x = -3/2$ (C) $$x = -1$$ or $x = -2/3$ (D) $$x = 1$$ or $x = -2/3$ 54. The determinant of the matrix $$\Delta = \begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix}$$ (A) $$2abc (a+b+c)^2$$ (B) $$abc (a+b+c)^3$$ (C) $$2ab^2c^3$$ (D) $$(a+b+c)^3$$ - 55. The matrix $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is - (A) Singular (B) Orthogonal (C) Skew Symmetric - (D) negative semi definite - 56. For the subgroups of size n, the upper and lower control limits for
rejection of a lot are termed as - (A) Modified control limits - (B) Natural control limits - (C) Specified control limits - (D) Tolerance control limits - 57. Let A and B be the stopping bounds for SPRT with strength (α, β) . Then A and B satisfies the following relations: - (A) $A \le \frac{(1-\beta)}{\alpha}$; $B \ge \frac{\beta}{1-\alpha}$ (B) $A \ge \frac{(1-\beta)}{\alpha}$; $B \le \frac{\beta}{1-\alpha}$ (C) $A \le \frac{\alpha}{1-\beta}$; $B \ge \frac{1-\alpha}{\beta}$ - (D) $A \ge \frac{(1-\alpha)}{\beta}$; $B \le \frac{\beta}{1-\alpha}$ - 58. Operating Characteristic curve reveals the ability of the sampling plan to distinguish between - (A) Good & bad lots (B) Good & bad sampling plans (C) Good & bad product - (D) All the above - 59. The wizard used to create tabulation reports in MS-Excel is - (A) Cross Tabulation Wizard - (B) Pivot Table Wizard (C) Function Wizard - (D) Conditional Formatting - 60. Which of the following is not true - (A) A straight line with finite length is a convex set and simplex - (B) A triangle is a convex set and simplex - (C) A square is a simplex but not convex set - (D) A cube is convex set but not simplex - 61. If an LPP is having 'm' constraints and 'n' decision variables, where all the constraints are ≤ type with RHS is non-negative. Then in Initial basic feasible simplex tables, the number of slack variables, Surplus variables and Artificial variables respectively are equal to - (A) 'n-m', 'm' and 'n' (B) 'm', '0' and 'n' (C) '0', 'm' and 'n' (D) 'm', '0' and '0' - 62. The 0-1 integer programming problem - (A) Requires that the decision variables have coefficients between o and 1 - (B) Requires that all the constraints have coefficients between 0 and 1 - (C) Requires the decision variables to have the values either zero or one - (D) All the above are true - 63. For unbalanced transportation problems - (A) Number of origins are not equal to number of destinations - (B) Number of basic cells are more than the number of destinations - (C) Number of basic cells are more than the number of origins - (D) Total availability is not equal to total requirement - 64. Dynamic programming problems deals with - (A) Single -stage decision making problems - (B) Multi stage decision making problems - (C) Time independent decision making problems - (D) Stage dependent decision making problems - 65. Which of the following is not an assumption underlying with the fundamental problem of Economic order quantity - (A) Demand is Known and Uniform - (B) Lead time is not zero - (C) Holding cost per unit per time period is constant - (D) Shortage costs are not permitted - 66. The cost of providing service in queue system decreases with - (A) Decreased arrival rate - (B) Increased arrival rate - (C) Decreased average waiting time in the queue - (D) Decreased number of servers in the system - 67. Which of the following Operational research problem cannot be expressed as a network flow chart problem - (A) Queuing problem - (B) Assignment or allocation problem - (C) Transportation and Transshipment problems - (D) Sequencing problem 11 149 | | (A) Predecessor Activity | (B) | Successor activ | rity | |-----|---|---------------------|---|------------------------| | | (C) Dummy activity | (D) | Dangling activ | ity | | 69. | The GNLPP with the constraints of inequa | lity ty | vpe can be solved | with | | | (A) Branch and bound techniques | (B) | Agglomeration | methods | | | (C) Lagrange's Method | (D) | Kuhn-Tucker c | onditions | | 70. | Consider a two-factor fixed effects model with a and b level respectively. Then MSA | | | | | | $(A) \frac{a}{b-1} \sum_{i=1}^{n} \alpha_i^2 = 0$ | (B) | $\frac{b}{a-1}\sum_{i=1}^n\alpha_i^2=$ | 0 | | | (C) $\frac{b}{a(n-1)}\sum_{i=1}^{n}\alpha_{i}^{2}=0$ | (D) | $\frac{a}{b(n-1)}\sum_{i=1}^n\alpha_i^2=$ | = 0 | | 71. | Let $\{X_n; n = 0,1,2 \dots \}$ be a branching pro- | cess v | with offspring me | ean m<1. Then | | | $E[\sum_{n=1}^{\infty} X_n]$ is equal to | | • | | | | (A) $m/(1-m)$ (B) $2/(1-m)$ | (C) | 3/(1-m) | (D) 2m | | 72. | Consider a Markov chain with TPM $\begin{bmatrix} 3/4\\1/2\\0 \end{bmatrix}$ | 1/4
0
1/4 | 0
1/2
3/4] then | | | | $P[X_2 = 3, X_1 = 2, X_0 = 1]$ is equal to | | • | | | | (A) 1/12 (B) 7/12 | (C) | 1/24 | (D) 5/24 | | 73. | In one-way ANOVA, assuming a-levels as distribution of the random variable SSE/o | _ | observations on | each factor level, the | | | (A) $\chi^2(a(n-1))$ (B) $\chi^2(a-1)$ | (C) | $\chi^2(n(a-1))$ | (D) $\chi^2 (n-1)^2$ | | 74. | The rank of the matrix $A = \begin{bmatrix} 1 & 2 & -3 & -1 \\ 1 & 3 & -2 & -1 \\ 3 & 8 & -7 & -1 \\ 2 & 1 & -9 & -1 \end{bmatrix}$ | -2
0
-2
10 | 3 | | The following activity in network diagram is usually denoted with dotted lines (A) 4 (B) (C) 3 (D) 1 | 75. | If R^2 is the coefficient of determination of R^2 is given by | the general linear model, then the adjusted | |-----|---|--| | | (A) $1 - \frac{n-1}{n-k} (1 - R^2)$ | $(B) \qquad 1 - \frac{n}{n-k} \left(1 - R^2 \right)$ | | | $(C) 1 - \frac{n-1}{k} \left(1 - R^2 \right)$ | $(D) \qquad 1 - \frac{n}{k} \left(1 - R^2 \right)$ | | 76. | The following is a Balanced Incomplet $v = 4$, $b = 4$, $k = r = 3$, $\lambda = 2$. | te Block Design (BIBD) with parameters | | | BLOCK I 1 | 3 4 | | | BLOCK II 2 | 3 4 | | | BLOCK III 1 BLOCK IV ? | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | The treatments in Block IV are | | | | (A) 1 4 2 | (B) 2 4 3 | | | | | | | (C) 2 3 1 | (D) 4 1 3 | | 77. | Moment Generating Function (M.G.F) of | χ_n^2 is | | ē | (A) $(1-2t)^{-1/2}$ (B) $(1-2t)^{1/2}$ | (C) $(1-2t)^{n/2}$ (D) $(1-2t)^{-n/2}$ | | 78. | Let $X \sim \text{Weibull } (\alpha, \mu)$. If $\alpha = 1$, $\mu = 0$ then | the distribution of X is | | | (A) Lognormal (B) Cauchy | (C) Gamma (D) Exponential | | 79. | Excel function VARP is used to calculate: | | | | (A) Variance of the population | (B) Variance of the percentage | | | (C) Variance of the proportions | (D) Pooled variance | | 80. | In SPSS, where would you find the option | for conducting a Kruskal-Wallis test? | | | (A) General linear model- non-parametr | ric tests | | | (B) Non-parametric tests - independent | samples | | | (C) Non-parametric tests- K independer | • | | | (D) Non-parametric tests - sample KW | | | | (12) You haramour copes - pample 1744 | | **(B)** **(D)** the probability the function CHITEST () For any particular x, CHIDIST(x, df) returns the value of _ Random variable x inverse function of CHIDIST () (A) | 82. | | | | rger than the within-groups variance,
a result occurring by sampling error | |-----|-----|------------------|-----|---| | | (A) | Small; decreases | (B) | large; decreases | | | (C) | small; increases | (D) | large; increases | - 83. The statistical function used to compute the one tail p-value associated with Z-test is - (A) 1-normsdist(abs(Z)) (B) 2*(1-normsdist(abs(Z)) (C) 2*(1-normdist(abs(Z))) (D) 1-normdist(abs(Z)) - 84. Which initial steps would you follow in order to start to perform a one-way unrelated ANOVA in SPSS? - (A) Save datafile → compare means → analyse → one-way ANOVA - (B) Analyse → compare means → one-way ANOVA - (C) Save datafile \rightarrow analyse \rightarrow compare means \rightarrow one-way ANOVA - (D) Save datafile → one-way ANOVA → analyse → compare means. - 85. What is the nature of the relationship between the p-value and sample size? - (A) A larger sample size is more likely to yield a non significant result even when the effect is large - (B) A larger sample size is more likely to yield a significant result even when the effect is small - (C) A smaller sample size is more likely to yield a significant result when the effect is small - (D) There is no relationship, this is a trick question - 86. Let $\{X_i\}$ denote the occurrence times of a renewal process $\{N(t);\ t\geq 0\}$ with $E(X_i)=\mu<\infty$, then according to elementary renewal theorem - (A) $\lim_{t \to 0} \frac{M(t)}{t} \to \mu$ (B) $\lim_{t \to \infty} \frac{M(t)}{t} \to \frac{1}{\mu}$ (C) $\lim_{t \to \infty} \frac{t}{M(t)} \to \mu$ (D) $\lim_{t \to \infty} \frac{t}{M(t)} \to \frac{1}{\mu}$ - 87. The renewal process M(t) is - (A) Random function - (B) Sure Function - (C) Sure function with $M(t) < \infty$ for all $0 \le t < \infty$ - (D) Non-decreasing and right continuous | 88. | The
X _i is | stopping time fo | or the | e renewal proces | s {N | $(t), t \ge 0$ with int | er occ | currence times | |-----|--------------------------|--|------------|--|-------------------|--|------------|-------------------| | - | (A) | N(t)-1 | (B) | N(t) | (C) | N(t) +1 | (D) | 1 / N(t) | | 89. | | number of decisions, which consist | | | - | | | sportation cost | | | (A) | m-n | (B) | mn | (C) | m+n | (D) | m/n | | 90. | | e independent ra | ndom | n variables X~ B | $(3,\frac{1}{3})$ | and Y~ B(5, $\frac{1}{3}$), | then | $P[X+Y\geq 1]$ is | | | equa | il to | | . • | | • | | | | | (A) | $\left(\frac{2}{3}\right)^8$ | (B) | $1-\left(\frac{2}{3}\right)^8$ | (C) | $1+\left(\frac{2}{3}\right)^8$ | (D) | 1 | | 91. | Rati | o of two independ | lent s | tandard normal | varia | tes is | | | | | (A) | Binomial variat | e | | (B) | Poisson variate | | | | | (C) | Normal variate | | | (D) | Standard Cauc | hy va | riate | | 92. | Let 2 | X be a continuou | s ran | dom variable wit | h pdf | | | | | f(x | | $kx, 0 \le x < k, 1 \le x < -kx + 3k, 2 \le x <$ | | | |
• | | | | | The | value of k is | | | | | | | | | (A) | 1 | (B) | 1/2 | (C) | 0 | (D) | 3/2 | | 93. | | ontinuous randor
P[X > b] = 0.05 i | | iable X has pdf | f(x) : | $=3x^2, 0 \le x \le 1.$ | The v | alue of b such | | | (A) | $\left(\frac{19}{20}\right)^{\frac{1}{2}}$ | (B) | $\left(\frac{19}{20}\right)^{\frac{1}{2}}$ | (C) | $\left(\frac{19}{20}\right)^{\frac{1}{4}}$ | (D) | 0. | | 94. | The | cdf of the smalle | st ord | er statistic X ₍₁₎ is | | | | | | | (A) | $1 \cdot [1 - F(x)]^n$ | | | (B) | $[1-F(x)]^n$ | | · | | | (C) | $1 - [1 - F(x)]^n$ $[1 - F(x)]^{n-1}$ | | | (D) | $[1 - F(x)]^n$ $1 - F(x)$ | | | | 95. | If X | \sim N(μ , σ ²), then pdf of U | $J=\frac{1}{2}(\frac{X-\mu}{\sigma})^2$ follow | s gamı | ma dist | ribution with p | arameter | |------|-------------|---|--|--------------|---------|-----------------|------------------| | | (A) | ½ (B) | 2 | (C) | 1 | (D) | 0 | | 96. | Ney | man Pearson lemma c | an be used when | n | | | · | | | (A) | Both the null and alt | ernate hypothe | sis are | compo | site | | | | (B) | Null hypothesis is si | mple and altern | ate is | compos | ite | | | | (C) | Both the null and alt | ernate hypothe | sis are | simple | • | | | | (D) | Null hypothesis is co | mposite and alt | ernate | is sim | ole | | | 97. | | large samples, under
istic is | the null hypoth | esis, t | he dist | ribution of the | likelihood ratio | | | (A) | Standard normal | | (B) | Chi s | quare | | | | (C) | Student-t | | (D) | Unifo | rm | | | 98. | | $X \sim N(\mu, \sigma^2)$. Supposing statement is incoming | | d σ a | ıre unk | nown. Then w | hich one of the | | | (A) | H: $\mu \le \mu_0$, $\sigma^2 > 0$ (μ_0 | is known cons | tant) i | s a com | posite hypothe | sis | | | (B) | H: $\mu > \mu_0$, $\sigma^2 > 0$ (μ_0 | is known const | tant) is | s a com | posite hypothe | sis | | | (C) | H: $\mu = \mu_0$, $\sigma^2 > 0$ is a | composite hype | othesis | 3 | • | | | | (D) | H: $\mu = \mu_0$, $\sigma^2 = 0$ is a | composite hype | othesis | 3 | | | | 99. | The
exis | family of parametric
t is, | distributions, 1 | for wh | ich the | mean and va | riance does not | | | (A) | Polya's Distribution | | (B) | Caucl | hy Distribution | | | ٠. | (C) | Negative Binomial d | istribution | (D) | Paret | o distribution | | | 100. | The | components of variance | ce of a variable i | n orth | ogonal | factor model a | re ,. | | | (A) | Communality; disper | rsion matrix | | - | | | | | (B) | Communality and Sp | ecific variance | , | | | | | | (C) | Communality and co | rrelation matri | ĸ | | | | | | (D) | Specific variance and | d dispersion ma | trix | | | | | | | | | | | | |